Welcome, Sign In First time visitor? Create a New Account
Your cart is empty

Waters ACQUITY UPLC HSS PFP Method Validation Kit, 100A, 1.8 um, 2.1 mm X 50 mm, 2/Pk - 186005975

Price:
Live chat below or contact us for latest price.


Download Data Sheet

Waters™ ACQUITY UPLC HSS PFP Method Validation Kit, 100A, 1.8 um, 2.1 mm X 50 mm, 2/Pk

Product Number: 186005975

Specifications:

% Carbon Load 7
Bonding Technology PFP
Brand ACQUITY UPLC
Chemistry Type PFP / Fluoro-Phenyl
Endcapped No
Endfitting Type Waters
Format Column
Inner Diameter (id) 2.1 mm
Length (mm) 50 mm
Mode Reversed-Phase
Particle Shape Spherical
Particle Size (dp) 1.8 µm
Particle Substrate Silica
Pore Size 100Å
Silanol Activity High
Surface Area 230
Technology HSS
USP Classification L43
Units in Package 1/pkg
pH Range 2 - 8

Method transfer kits are designed to preserve the integrity of a separation as it is transferred between UPLC and HPLC platforms. Based on the concept of maintaining column length [L] to particle size [dp] ratio [L/dp], these kits provide an ACQUITY UPLC column with an HPLC column of equivalent selectivity and resolving power. Using the ACQUITY UPLC columns calculator, methods can be fully transferred from HPLC to UPLC or from UPLC to HPLC.

High Strength Silica [HSS] Particle Technology

To complement Waters revolutionary Hybrid Particle Technology [HPT], a mechanically tolerant, silica-based material was designed to withstand UPLC pressures. High Strength Silica [HSS] particle technology was born from an innovative synthetic process that significantly increases the mechanical stability of silica while maintaining pore volumes similar to that of HPLC silica-based materials. T he result is a novel particle technology that provides increased retentivity compared to hybrid particles while serving as the ideal substrate to create stationary phases that provide alternate selectivity.

As more separation scientists around the world realize the benefits of UPLC technology in their applications, Waters continues to provide additional UPLC particle and chemistry solutions to meet these demands. Waters material scientists developed a new High Strength Silica (HSS) particle with the high mechanical stability and appropriate morphology necessary to provide long column lifetimes and UPLC efficiencies at pressures up to 15000 psi (1000 bar). This 1.8 μm UPLC HSS particle is designed and tested specifically for use in UPLC separations.

ACQUITY UPLC columns

ACQUITY UPLC columns are the most technologically advanced LC columns ever created and are the only columns designed, tested and certified to withstand the pressures of UPLC Technology. Based upon the highly efficient 1.7 µm Bridged Ethyl Hybrid (BEH) particles and 1.8 µm High Strength Silica (HSS) particles, these columns are the first and only columns that allow separation scientists to achieve maximum speed, sensitivity and resolution without compromise. The particles and chemistries of the ACQUITY UPLC column family were carefully chosen to produce the ideal combination of ultra-performance efficiencies, wide pH range and complementary selectivities. ACQUITY UPLC BEH columns and ACQUITY UPLC HSS columns are the only columns recommended for use with ACQUITY UPLC Systems.

There is more to creating a UPLC particle than synthesizing a small particle. Many HPLC particles do not possess the mechanical stability and structural integrity to withstand UPLC operating pressures (e.g., 15000 psi/1000 bar). Why is pressure tolerance important? In order to realize the efficiency gains of sub-2 μm particles, the ability to routinely operate at higher linear velocities (e.g., higher flow rates) is required. These higher linear velocities combined with small, sub-2 μm particles result in higher operating backpressures. Waters has created two highly efficient, pressure-tolerant UPLC particles: the 1.7 μm Ethylene Bridged Hybrid (BEH) particle and the 1.8 μm High Strength Silica (HSS) particle.

The first ACQUITY UPLC particle created was the 1.7 μm Ethylene Bridged Hybrid (BEH) particle. This second generation hybrid particle is one of the key enablers behind UPLC technology and is available in five column chemistries: C18, C8, Shield RP18, Phenyl and HILIC. Because this is a hybrid particle, a wider usable pH range (up to pH 1-12) makes method development faster and easier. BEH particles are also available in HPLC particle sizes (2.5, 3.5, 5 and 10 μm) in the XBridge family of HPLC columns, thus allowing seamless transfer between HPLC and UPLC separations.

ACQUITY UPLC HSS column chemistries include HSS C18, HSS C18 SB (Selectivity for Bases) and T3. The HSS C18 chemistry is a fully endcapped, ultra-performance, general purpose C18 bonded phase that provides superior peak shape for bases, increased retentivity (vs. ACQUITY UPLC BEH C18 columns), and extremely long lifetimes under acidic conditions. The HSS C18 SB (Selectivity for Bases) chemistry is an unendcapped C18 bonded phase designed and optimized for low pH method development and offers alternate selectivities, especially for basic com- pounds, as compared to most modern, high coverage C18 chemistries. The HSS T3 chemistry is an aqueous mobile phase compatible C18 bonded phase that is designed to retain and separate small, water soluble, polar organic molecules, much like Atlantis T3 HPLC columns.

Related Products

  • 186004475 - Oasis Method Development 96-well µElution Plate, 2 mg Sorbent per Well, 30 µm, 1/pk
  • 186005666CV - TruView pH Control LCMS Certified Clear Glass, 12 x 32 mm, Screw Neck Vial, with Cap and preslit PTFE/Silicone Septum, 2 mL Volume, 100/pk
  • 186006360 - Neutrals QC Reference Material
  • 186005837 - 96-well Sample Collection Plate, 700 µL Round well, 25/pk
  • 186006363 - Reversed-Phase QC Reference Material

  • Model: 186005975
  • Manufactured by: Waters